annihilator-small submodules
Authors
abstract
let $m_r$ be a module with $s=end(m_r)$. we call a submodule $k$ of $m_r$ annihilator-small if $k+t=m$, $t$ a submodule of $m_r$, implies that $ell_s(t)=0$, where $ell_s$ indicates the left annihilator of $t$ over $s$. the sum $a_r(m)$ of all such submodules of $m_r$ contains the jacobson radical $rad(m)$ and the left singular submodule $z_s(m)$. if $m_r$ is cyclic, then $a_r(m)$ is the unique largest annihilator-small submodule of $m_r$. we study $a_r(m)$ and $k_s(m)$ in this paper. conditions when $a_r(m)$ is annihilator-small and $k_s(m)=j(s)=tot(m, m)$ are given.
similar resources
Annihilator-small submodules
Let $M_R$ be a module with $S=End(M_R)$. We call a submodule $K$ of $M_R$ annihilator-small if $K+T=M$, $T$ a submodule of $M_R$, implies that $ell_S(T)=0$, where $ell_S$ indicates the left annihilator of $T$ over $S$. The sum $A_R(M)$ of all such submodules of $M_R$ contains the Jacobson radical $Rad(M)$ and the left singular submodule $Z_S(M)$. If $M_R$ is cyclic, then $A_R(M)$ is the unique ...
full textAnnihilator-small Right Ideals
A right ideal A of a ring R is called annihilator-small if A+ T = R; T a right ideal, implies that l(T ) = 0; where l( ) indicates the left annihilator. The sum Ar of all such right ideals turns out to be a two-sided ideal that contains the Jacobson radical and the left singular ideal, and is contained in the ideal generated by the total of the ring. The ideal Ar is studied, conditions when it ...
full textModules Whose Small Submodules Have Krull Dimension
The main aim of this paper is to show that an AB5 module whose small submodules have Krull dimension has a radical having Krull dimension. The proof uses the notion of dual Goldie dimension.
full textSmall submodules with respect to an arbitrary submodule
Let $R$ be an arbitrary ring and $T$ be a submodule of an $R$-module $M$. A submodule $N$ of $M$ is called $T$-small in $M$ provided for each submodule $X$ of $M$, $Tsubseteq X+N$ implies that $Tsubseteq X$. We study this mentioned notion which is a generalization of the small submodules and we obtain some related results.
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyجلد ۳۹، شماره ۶، صفحات ۱۰۵۳-۱۰۶۳
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023